منابع مشابه
Quite Complete Real Closed Fields
We prove that any ordered field can be extended to one for which every decreasing sequence of bounded closed intervals, of any length, has a nonempty intersection; equivalently, there are no Dedekind cuts with equal cofinality from both sides. Here we strengthes the results from the published version.
متن کاملM ay 2 00 7 QUITE COMPLETE REAL CLOSED FIELDS
We prove that any ordered field can be extended to one for which every decreasing sequence of bounded closed intervals, of any length, has a nonempty intersection; equivalently, there are no Dedekind cuts with equal cofinality from both sides. There are additions to the published version.
متن کاملReal closed exponential fields
In an extended abstract [20], Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre’s construction. The construction becomes canonical once we fix the real closed exponential field R, a re...
متن کاملIntersections of Real Closed Fields
1. In this paper we wish to study fields which can be written as intersections of real closed fields. Several more restrictive classes of fields have received careful study (real closed fields by Artin and Schreier, hereditarily euclidean fields by Prestel and Ziegler [8], hereditarily Pythagorean fields by Becker [1]), with this more general class of fields sometimes mentioned in passing. We s...
متن کاملRelative randomness and real closed fields
We show that for any real number, the class of real numbers less random than it, in the sense of rK-reducibility, forms a countable real closed subfield of the real ordered field. This generalizes the well-known fact that the computable reals form a real closed field. With the same technique we show that the class of differences of computably enumerable reals (d.c.e. reals) and the class of com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2004
ISSN: 0021-2172,1565-8511
DOI: 10.1007/bf02771536